If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+18w+40=0
a = 2; b = 18; c = +40;
Δ = b2-4ac
Δ = 182-4·2·40
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2}{2*2}=\frac{-20}{4} =-5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2}{2*2}=\frac{-16}{4} =-4 $
| (2x-5)+(5x-3)=90 | | 81=–9y | | (6x-12)+(4x-8)=180 | | 4/x-5=6/2x+1 | | 200m-75m+57,300=61,500-175m | | Y=20x-30 | | (-5/4)p=20 | | 2n+(-19)=-7 | | 4x+8x=10.5 | | u^2-33u+200=0 | | -5(k+2)-5(k-5)=0 | | 0.3x-30=180 | | 8x+4=6x-30 | | 7=f+43/3 | | 414x^2+283x+16=180 | | 4.8(5.2)=x | | 414x^+283x+16=180 | | 2m+3m²-4m=0 | | 2+5h=6+3 | | 0.06x+28=180 | | 4x+72=90 | | 6(g+4)+5(=g+3) | | 0.19x+67=180 | | x+0.5=0.3 | | 3/4(6z+4)+2z=2(z-6) | | a(a−1)=a^2+3 | | 3x+15=171 | | -(3a+2)-3(5a+7)=0 | | 4(5x-4)+3(15-3x)-2(5x+1)=-1 | | 5.9x-80=180 | | 13x-13=-156 | | 7y+8=41 |